Maskless and resist-free rapid prototyping of three-dimensional structures through electron beam induced deposition (EBID) of carbon in combination with metal-assisted chemical etching (MaCE) of silicon.

نویسندگان

  • Konrad Rykaczewski
  • Owen J Hildreth
  • Dhaval Kulkarni
  • Matthew R Henry
  • Song-Kil Kim
  • Ching Ping Wong
  • Vladimir V Tsukruk
  • Andrei G Fedorov
چکیده

In this work, we introduce a maskless, resist-free rapid prototyping method to fabricate three-dimensional structures using electron beam induced deposition (EBID) of amorphous carbon (aC) from a residual hydrocarbon precursor in combination with metal-assisted chemical etching (MaCE) of silicon. We demonstrate that EBID-made patterned aC coating, with thickness of even a few nanometers, acts as a negative "mask" for the etching process and is sufficient for localized termination of the MaCE of silicon. Optimal aC deposition settings and gold film thickness for fabrication of high-aspect-ratio nanoscale 3D silicon structures are determined. The speed necessary for optimal aC feature deposition is found to be comparable to the writing speed of standard Electron Beam Lithography and the MaCE etching rate is found to be comparable to standard deep reactive ion etching (DRIE) rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

Nanowires fine tunable fabrication by varying the concentration ratios, the etchant and the plating spices in metal-assisted chemical etching of silicon wafer.

The metal-assisted chemical etching (MACE) was used to synthesis silicon nanowires. The effect of etchant concentration, etching and chemical plating time and doping density on silicon nanowires length were investigated. It is held that the increasing of HF and H2O2 concentrations lead to etching rate increment and formation of wire-like structure. The results show that, the appropriate ratio o...

متن کامل

Investigation of HF/H2O2 Concentration Effect on Structural and Antireflection Properties of Porous Silicon Prepared by Metal-Assisted Chemical Etching Process for Photovoltaic Applications

Porous silicon was successfully prepared using metal-assisted chemical etching method. The Effect of HF/H2O2 concentration in etching solution as an affecting parameter on the prepared porosity type and size was investigated. Field emission electron microscopy (FE-SEM) confirmed that all etched samples had porous structure and the sample which was immersed into HF/H2O2 withmolar ratio of 7/3.53...

متن کامل

Focused ion beam induced deposition: fabrication of three-dimensional microstructures and Young’s modulus of the deposited material

In this work, some of the possibilities of focused ion beams for applications in microsystem technology are explored. Unlike most previous studies, the emphasis is on ‘additive’ techniques, i.e. localized maskless deposition of metals and insulators. More precisely, we will show the possibility of fabricating small three-dimensional structures, using focused ion beam deposition of silicon oxide...

متن کامل

Electron-beam-induced deposition of platinum from a liquid precursor.

We demonstrate here the first focused electron-beam-induced deposition (EBID) of nanostructures using a liquid precursor. We have deposited sub-50 nm platinum (Pt) wires and dots from a dilute, aqueous solution of chloroplatinic acid. Existing EBID processes rely on the electron-beam stimulated decomposition of gaseous precursors; as a result, the deposits are highly contaminated (up to 75 at. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2010